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Abstract
We revisit the Jordan–Wigner transformation, showing that—rather than a
non-local isomorphism between different fermionic and spin Hamiltonian
operators—it can be viewed in terms of local identities relating different
realizations of projection operators. The construction works for arbitrary
dimension of the ambient lattice, as well as of the on-site vector space,
generalizing Jordan–Wigner’s result. It provides a direct mapping of local
quantum spin problems into local fermionic problems (and vice versa), under
the (rather physical) requirement that the latter are described by Hamiltonians
which are even products of fermionic operators. As an application, we
specialize to mappings between constrained-fermion models and spin-1 models
on chains, obtaining in particular some new integrable spin Hamiltonian, and
the corresponding ground-state energies.

PACS numbers: 75.10.Jm, 05.30.−d, 03.65.Fd, 71.10.−w

1. Introduction

Recently [1, 2] increasing interest has been given to the problem of mapping quantum lattice
models of interacting spins into fermionic lattice models, and vice versa, in the spirit of
unravelling hidden structures (symmetries) of the problem by changing its representation,
and possibly identifying new integrable cases. This is relevant for instance in the study of
quantum phase transitions, i.e. zero-temperature changes of macroscopic order induced by
some interaction parameter.

The idea of spin–fermion mapping relies in fact on the old result by Jordan and Wigner
[3], who first transformed quantum spin S = 1/2 operators, which commute at different
lattice sites, into operators obeying a Clifford algebra (fermions); the transformation was used
for mapping the one-dimensional XX model into a spinless fermion model, the latter being
exactly solvable. The Jordan–Wigner transformation (JWT) was recently generalized in [1]
to the cases of arbitrary spin S, which are naturally mapped into multi-flavoured fermions (for
instance, electrons with spin).
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It is interesting to note that the JWT is always a non-local transformation: in order
to change the algebra of the single-particle operators at a given site (which is known as
transmutation of statistics [2]), the transformation in fact involves products of non-trivial
operators at each lattice site. Nonetheless the JWT—being usually applied to Hamiltonians
which are (sums of) even products of single-particle operators—turns out to transform local
Hamiltonians into each other; here, given a D-dimensional lattice � with L sites, we define
locally any Hamiltonian Hj acting on n neighbouring sites of j in �, such that limL→∞ n

L
= 0.

JWT—when applied to physically meaningful global Hamiltonian operators H .= ∑
j Hj—

always maps a local spin–spin term (say H(S)
j ) into a local electron–electron term at the same

lattice site H(F )
j . Such an observation suggests that the mapping induced by the non-local

JWT could fruitfully be generated by just a local transformation.
The spirit of the present paper is to unravel such local transformation, and to give a

systematic prescription which allows us to obtain directly at a local level both the results
of (generalized) JWT and new mappings between interacting spin and electron Hamiltonian
operators. This is useful for instance when looking for integrable one-dimensional models:
it is well known that H does correspond to an integrable model whenever the local matrix
representing Hj can be expressed as a derivative of a R-matrix satisfying appropriate equations
(Yang–Baxter equations, see [4] and references therein). Hence integrability amounts to a
local property: understanding the local nature of the JWT should allow us to generate from a
given local R-matrix both fermionic and spin integrable models.

In order to achieve this goal, we first focus our attention on the matrix representation of
the ‘isomorphic’ operators related by the JWT: the crucial and trivial observation is that they
have in fact identical matrix representation, meaning that they can be viewed as different
realizations—in terms of spin and fermionic operators respectively—of a unique formal
operator. The latter step will be achieved in the following through the combined use of
on-site projection operators, and of the theory of matrix representation for graded operators
(see for instance [5] and references therein). After introducing the reader to the method we
then specialize to one-dimensional case, obtaining a single simple local equation relating spin
S models to multi-flavoured fermionic models, for arbitrary S. This is the main result of our
paper; the latter is shown to reproduce the results of JWT for spin 1/2 systems. We then
explore in some detail the correspondence between constrained fermions models and spin
S = 1 models; in particular, by this analysis we obtain some new integrable spin-1 model, for
which we explicitly derive the ground-state energy.

2. Matrix representation for even Hamiltonian operators

In order to obtain a matrix representation for a given Hamiltonian operator H, we have to
specify the global vector space V (glob) on which H acts. We begin by stating that this space is
a tensor product of L copies of the local vector space V at each lattice site,

V (glob) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
L times

. (1)

Here the order of the sites associated with the different copies of V has to be fixed, meaning
that the sites j on the D-dimensional lattice have to be put in one-to-one correspondence with
a scalar number j ranging from 1 to L. While such correspondence is quite natural for D = 1
(where j ≡ j ), there are many possible different choices in the case of dimension greater than
one (see for instance [2]). We shall not pursue this argument further here, and in what follows
we simply assume that such correspondence has been set.
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Moreover, assuming that V has dimension d, we denote by |αj 〉 the d state vectors which

span V at site j . These are defined through d formal raising operators
{
h

(αj )

j

}
which act on the

local vacuum |0〉, |αj 〉 .= h
(αj )

j |0〉. At this level, looking for different realizations of H reduces

to looking for different realizations of the h
(αj )

j . In the following we shall denote the different
realizations by an index X which can assume both values X = S for spin realizations, and
X = F for fermionic ones; whereas, whenever we omit such an index, we refer to the abstract
operators, i.e. X can assume both values. For instance, for spin realization, VS is spanned by
the vacuum and the d − 1 non-vanishing powers of the raising operator S+ of a spin S operator
with eigenvalue S = (d − 1)/2; here the following usual su(2) commutation relations hold,[

S
(j)
+ , S

(j ′)
−

] = δj,j ′2S(j)
z ,

[
S(j)

z , S
(j ′)
±

] = ±δj,j ′S
(j)
± , (2)

whereas, in the case of fermionic realization with d = 2f (with f ∈ N number of flavours of
the fermions), VF will be spanned by even and odd products of f fermionic creation operators
c
†
j,s , which satisfy the Clifford algebra with anticommutation relations given by{

c
†
j,s , c

†
j ′,s ′

} = 0,
{
c
†
j,s , cj ′,s ′

} = δj,j ′δs,s ′ ; s, s ′ = 1, . . . , f. (3)

Due to the different (anti)-commutation relations for the operators which realize V , the latter
may (VF ) or may not (VS) have an intrinsic graduation; in particular, VF = V (0)

⊕
V (1),

where the odd (even) subspace V (1) (V (0)) is spanned by those vectors that are built with an
odd (even) number of creation operators. Similarly, vectors and operators are said to have a
parity p = 1 (p = 0).

With the above specifications we can write the basis vector of the global vector space
V (glob) as

|α1, . . . , αL〉 def= h
(α1)
1 · · ·h(αL)

L |0〉 ≡ |α1〉 · · · |αL〉 (4)

where |0〉 is now the global vacuum, and the parity of the above state vector is simply given
by

∑
j p(αj ).

The Hamiltonian operatorH is a global operator, defined on the whole lattice. As specified
in the introduction, we limit our analysis to the case in which the Hamiltonian is a sum of
local operators Hj , the latter acting on a vector space V (n+1) which is the tensor product of
n + 1 copies of V on n + 1 (n + 1 < L) neighbouring sites in the ordered state (4). Moreover,
we require that H(F )

j is a sum of even products of fermionic operators, which implies that Hj

always has parity p = 0. The latter choice, which is quite reasonable from the physical point
of view, allows us to limit the problem of matrix representation of graded operators to that of
the matrix representation of just the local Hamiltonian Hj . In fact, by using completeness and
orthogonality properties of the basis vectors (4), we can rewrite the Hamiltonian operator H
as

H =
∑

j

∑
αj ,...,αj+n; βj ,...,βj+n

(Hn+1)
αj ,...,αj+n

βj ,...,βj+n
Oβj ,...,βj+n

αj ,...,αj+n
, (5)

where Hn+1 is a dn+1 × dn+1 matrix representing the local Hamiltonian operator Hj , and

Oβj ,...,βj+n

αj ,...,αj+n

.= |αj · · · αj+n〉〈βj+n · · · βj | (6)

are local projection operators acting on sites from j to j + n.
As expected, from (5) we have that the matrix representation H of the dL × dL global

Hamiltonian H, which reads

H =
∑

j

I ⊗ · · · ⊗ I ⊗ H(n+1)︸ ︷︷ ︸
j→j+n

⊗I ⊗ · · · ⊗ I, (7)



4522 A Anfossi and A Montorsi

is fully determined by the matrix representation of the local problem, Hn+1. Hence, starting
from a given Hn+1, equations (5) and (7) establish that different global isomorphic spin
and fermionic Hamiltonians are simply obtained by looking to different realizations of local
projection operators (6). The latter contain the ultimate significance of the JWT: by realizing
them as fermionic or spin projectors one obtains the corresponding local (and global) spin and
fermionic Hamiltonian. In the next section, we shall construct these operators (6) in terms of
on-site projector operators, which will then be implemented explicitly in spin and fermionic
realizations.

The above formulation of a quantum problem somehow reverses the standard approach,
which is to describe a physical problem through an Hamiltonian operator, and successively to
look for its matrix representation in order to solve it. In contrast, here we start from a matrix,
which is the unique representation of a given abstract quantum problem—identified by the
Hamiltonian (5), and by the abstract projection operators (6)—and look for its realization into
different operator languages, i.e. into different physical problems.

Note that such strategy would also hold for mapping to operator languages other than
spin or fermionic (for instance, anyons or hard-core bosons) which can represent the (even)
Hamiltonian (5); the relevant point being the realization of the local projectors (6) in the
chosen language.

Note also that the local algebra obeyed by projectors (6) is independent of the realization
chosen. It reads

Oβj ,...,βj+n

αj ,...,αj+n
Oβ ′

j ,...,β
′
j+n

α′
j ,...,α

′
j+n

= δα′
j ,βj

· · · δα′
j+n,βj+n

Oβ ′
j ,...,β

′
j+n

αj ,...,αj+n
. (8)

For n and d given, the above relations close in a (sub)algebra (of) u(dn+1) . Such local algebra
is characteristic of the abstract problem, and it is realized through spin or fermionic operators
when expressing the even local operators O in terms of spin or fermionic projectors.

3. Hamiltonian in terms of on-site projectors

Let us introduce the projection operators at site j , Eβ
α

.= |α〉〈β|. The operator in (6) can always
be expressed as product of local projection operators Eβ

α . This is obtained by combining
together bras and kets at the same site, which, due to the possible grading of the local vectors,
requires some algebra. In order to avoid cumbersome notation, we limit our analysis to the
case of a Hamiltonian which describes just two-site interaction terms, the sites being at a
distance 1; such an assumption in fact limits the following analysis to the one-dimensional
case with nearest-neighbour interaction, though it is easily generalizable to higher dimension,
and to more general local interactions.

In this case the two-site operator (6) simply reads

Oβj ,βj+1
αj ,αj+1 = (−)p(βj )[p(αj+1)+p(βj+1)]Eβj

αj
Eβj+1

αj+1 , (9)

where the sign in front of the on-site projectors in fact can be negative only for a graded
realization of operator (6) (for instance, in the fermionic case). By explicitly implementing
(9) in the spin and fermionic case, for any dimension d of the on-site vector space, one finally
obtains the local mapping between the product of on-site projection operators at j and j + 1
in the two cases, which we may define as local (generalized) JWT. It reads

(ES)
βj

αj
(ES)

βj+1
αj+1 → (−)p(βj )[p(αj+1)+p(βj+1)](EF )

βj

αj
(EF )

βj+1
αj+1 . (10)

In practice, what is often convenient to do is:

(i) start from a known local problem in some operator language (spin or fermionic);
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(ii) rewrite it in terms of on-site projection operator in the same language; incidentally, this
step gives the non-vanishing elements of the local matrix H2;

(iii) use (10) to map products of on-site projectors in the other language; and finally
(iv) look for the realization of the projectors in the other language (fermionic or spin): this

will be the local Hamiltonian in the other language.

Here, as an example, we study the generic case in d = 2.
We first construct the on-site projectors in terms of spin 1/2 and spinless fermions operators
respectively. It is useful to cast them into 2 × 2 matrix E (2)

X with operator entries. In the spin
case it reads

E (2)
S =

( 1
2 − σz σ+

σ− 1
2 + σz

)
, (11)

where σα (α = +,−, z) are the Pauli spin-1/2 operators, all with even parity, and the on-site
basis is spanned by the eigenvectors of σz,

∣∣− 1
2

〉
and

∣∣ 1
2

〉
respectively. In the fermionic case

the projector matrix, in terms of spinless fermion creation and annihilation operators c†, c,
reads

E (2)
F =

(
1 − n c†

c n

)
, (12)

with n
.= c†c; now the parity of diagonal entries is even, whereas that of off-diagonal entries

is odd (in general, for graded vector spaces V (F) the parity of projectors Eβ
α is p(α) + p(β)).

The more general matrix representing an even Hermitian Hamiltonian with nearest-
neighbour interaction in one dimension for d = 2 is given by the 4 × 4 matrix H

(2)
2 ,

H
(2)
2 =




h00
00 0 0 h11

00

0 h01
01 h10

01 0

0 h01
10 h10

10 0

h00
11 0 0 h11

11


 , (13)

where the eight non-vanishing entries (arbitrary, except the constraints h10
01 = h01

10, and
h11

00 = h00
11 imposed by the hermiticity requirement) have been written as h

αj αj+1

βj βj+1
which makes

it easy to compare with (5). Now any local spin = 1/2 Hamiltonian and its correspondent
spinless fermion realization are obtained from (5), (9) by inserting a given matrix of the form
(13) and the appropriate projectors (11) and (12) respectively.

For instance we may look at the fermionic realization of the isotropic Heisenberg
Hamiltonian for spin-1/2 operators, which is a sum of local two-site operators of the form

H(S)
H,j = 2σ̄j · σ̄j+1. (14)

It can easily be verified that it corresponds to the choice h00
00 = h10

01 = h11
11 = 1 and

h11
00 = h01

01 = h10
10 = 0 in (13), in which case H

(2)
2 is just the standard two-site permutation

matrix; incidentally, this fact makes the model integrable. With the above specifications, H(S)
H,j

can now be written in terms of spin projectors, according to step (ii) of our scheme, as

H(S)
H,j = (ES)

0j

1j
(ES)

1j+1

0j+1
+ (ES)

1j

0j
(ES)

0j+1

1j+1
+ (ES)

1j

1j
(ES)

1j+1

1j+1
+ (ES)

0j

0j
(ES)

0j+1

0j+1
. (15)

By now implementing steps (iii) and (iv) of the same scheme to map bilinear products of spin
into fermionic on-site projectors, and realizing the latter through (12) in terms of fermionic
operators, we finally get the local Heisenberg Hamiltonian in its fermionic realization, which
reads

H(F )
H,j = c

†
j cj+1 − cj c

†
j+1 + 2njnj+1 − nj − nj+1, (16)
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apart from constant terms. Of course, such local identification reflects into an identification of
the global Hamiltonians as well, the latter being in perfect agreement with the results obtained
by the non-local JWT.

4. Correspondence between spin-1 models and extended t − J models

Here we illustrate the correspondence obtained by the scheme developed in the previous
section in the case of an on-site vector space of dimension d = 3. Such a case is of particular
interest since the models obtained in both realizations are thoroughly studied in the literature,
exhibiting a rich structure of the quantum phase diagram; in the fermionic case, these are
extended t − J models with constrained fermions [6] (in particular, t − J model and infinite
U Hubbard model), whereas in the spin realization they correspond to spin-1 models.

In order to perform the local mapping, we have first to give the on-site projectors in the
two realizations. This requires us to specify which are the basis vectors of the on-site vector
space |αR〉 in the two cases, as well as how each of them correspond to a different abstract α.

For instance, in the previous example with d = 2 we implicitly assumed that the state
|−1/2〉 in the spin realization was implemented as the empty state in the spinless fermion
realization. Of course we could have chosen the opposite way, associating the empty state
with the state of |1/2〉 in the spin realization; if that was the case, we would have obtained
a particle–hole transform of the fermionic model corresponding to the same spin model,
meaning that such an operation (which is a mere redefinition of basis) does not change at all
the spectrum of the model. In general, for d > 2, one may obtain—associated with different
identifications of the corresponding basis vectors in the two representations—many different
mappings of the same (say) spin model, whose number is given by (d − n1)!n1!, n1 being the
number of odd-parity states (i.e. the dimension of V (1)).

In view of the above, we first proceed to the separate construction of projection operators
in the two realizations, and only after we eventually specify a correspondence between state
vectors in the two realizations. In the spin case, we choose |1S〉 = |1〉, |2S〉 = |0〉, and
|3S〉 = | − 1〉, where the index on the rhs refers to the eigenvalue of Sz. With this choice the
projector matrix in the spin-1 realization reads

E (3)
S = 1

2




S2
z + Sz

√
2SzS+ S2

+√
2S−Sz 2(1 − S2

z ) −√
2S+Sz

S2
− −√

2SzS− S2
z − Sz


 . (17)

For the fermionic case, we may identify the basis of the on-site fermionic Hilbert space with
the three possible physical states |1F 〉 = |↑〉, |2F 〉 = |0〉, |3F 〉 = |↓〉 (with p(2F ) = 0,
p(1F ) = p(3F ) = 1), since two fermions on the same site are not allowed (constrained
fermions); with this choice, the projection operators Eβ

Fα , which turn out to be a subset of
so-called Hubbard projectors, can be cast again in the form of a 3×3 matrix E (3)

F with operator
entries; explicitly,

E (3)
F =




ñ↑ c̃
†
↑ c̃

†
↑c̃↓

c̃↑ 1 − ñ↑ − ñ↓ c̃ ↓
c̃
†
↓c̃↑ c̃

†
↓ ñ↓


 , (18)

where, as usual, we have introduced the constraint of no double occupation through
the constrained fermion operator c̃σ

.= (1 − nσ̄ )cσ , with σ̄ = −σ ; moreover ñσ
.= c̃†σ c̃σ .

The more general constrained fermions Hamiltonian with nearest-neighbour interaction is the
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t − J − V Hamiltonian [6]

H
(F)
tJV = −t

∑
j,σ

(
c̃
†
j,σ c̃j+1,σ + h.c.

)
+ V

∑
j

ñj ñj+1 + J
∑

j

�Sj · �Sj+1, (19)

where the standard on-site (su(2)) spin operator �Sj has been introduced: S+,j =
c̃
†
↑,j c̃↓,j ,S−,j = S†

+,j , Sz,j = 1
2 (ñ↑,j − ñ↓,j ). In (19) terms not conserving the total number of

electrons N .= ∑
j ñj and the total spin operator �S .= ∑

j
�Sj have been neglected.

Interestingly, H
(F)
tJV reduces to the infinite U Hubbard model for J = V = 0, and to

the standard t − J model for V = − J
4 , both of which have been widely investigated in the

literature; in particular the exact analytical solution is known in one dimension both for the
infinite U Hubbard model [7] and for the supersymmetric (i.e. J = −2t) t − J model [6, 8].

The spin-1 realization of the t − J − V Hamiltonian (19) is now obtained by specifying
which αS corresponds to a given αF ; we choose |α〉F → |α〉S , in which case—up to conserved
quantities—the local JWT (9) gives

H
(S)
tJV ,j = −t[Sj Sj+1 + (Sj Sj+1)

2] +
2V + 3t

2
S2

z,j S
2
z,j+1

+
J + 2t

8

[
S2

+,j S
2
−,j+1 + S2

−,j S
2
+,j+1 + 2Sz,j Sz,j+1

]
(20)

from which the global Hamiltonian H(S)
tJV is straightforwardly obtained.

The extended t − J Hamiltonian in the spin-1 realization can be recognized as a sum of
three independent contributions. As a general comment, one may observe that the interplay of
such contributions to determine the ground-state phase diagram properties of H(S)

tJV are easily
deduced from those of the corresponding fermionic model [9]. In particular, the J term is
expected to drive phase separation, whereas the V term is expected to be responsible of the
opening of a (spin) gapped phase. These phases are now to be interpreted as driven from
quadrupolar interaction in the spin description, and in particular the gapped phase should be
analysed in terms of some unusual quadrupolar ordering [10].

More specific interesting observations are now in order. First of all—for arbitrary values
of the three independent parameters—H(S)

tJV inherits all the symmetries of its fermionic partner.
Since these were built in the even sector of the on-site fermionic algebra, in order to give them
we simply have to translate N and �S in terms of on-site projectors, and then to rewrite the
latter into their spin realization. Explicitly, they turn out to be

N =
∑

j

S2
z,j , S+ =

∑
j

S2
+,j , S− = S†

+, and Sz = 1

2

∑
j

Sz,j .

Also, we note that the choice J = −2t, V = − 3
2 t , which in the spin realization corresponds to

the pure bilinear biquadratic spin-1 Hamiltonian with � = 1 [10], in the fermionic realization
reads as a t − J supersymmetric model extended by a nearest-neighbour repulsive term, in
perfect agreement with [1]; in this case the absolute ground state of the latter coincides with
that given by Sutherland in [8] for the SU(3) symmetric spin-1 model (also known as the
F 3 case (see below)), and the spectrum is gapless. Even more interestingly, there are other
choices of parameters in (19) corresponding to integrable cases which generate integrable
spin-1 models not discussed in the literature.

First of all, the supersymmetric t − J model in the spin realization reads

H
(S)
tJ ss = −t

∑
j

[
Sj Sj+1 + (Sj Sj+1)

2 − 2S2
z,j S

2
z,j+1

]
, (21)

this is the bilinear biquadratic � = 1 spin Hamiltonian already cited, extended by a diagonal
nearest-neighbour quadrupolar interaction. The ground state of the latter is hence given by
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Lai–Sutherland [8, 11] solution of supersymmetric t−J model, and the spectrum is thoroughly
discussed in the literature.

Also surprising is the choice J = V = 0, which in the fermionic realization would
correspond to the infinite U Hubbard model: its spectrum in one dimension is known [7] to
be that of a spinless fermion; in the spin-1 realization we have that such is also the spectrum
of a non-trivial model which to our knowledge was never proved to be integrable.

5. Integrable spin-1 models as generalized permutators

Let us exploit more closely the above observations. Thanks to the local character of our
JWT, models proved to be integrable in one language—which feature refers to the structure
of the local Hamiltonian—are straightforwardly translated into integrable models in the other
language. In the following, we provide other integrable spin-1 models starting from fermionic
ones.

It has recently been shown [5] that both supersymmetric t − J and infinite U electron
models are integrable in one dimension since they belong to a larger class of models for which
the local Hamiltonians have the structure of generalized permutators.

The meaning of a generalized permutator is easily understood in terms of so-called
Sutherland species (SS). Starting from the on-site vector space V , we may think to group
its d basis vector (or physical species) into NS � d different species which are called the
Sutherland species. Each of these species is left unchanged (apart from a possible sign
change, see below) by the action of the generalized permutator, the latter interchanging only
basis vector belonging to different SSs. A generalized permutator would then have the structure
of an ordinary permutator if represented on a local vector space of dimension NS .

Each of the NS SS is said to be bosonic (B) if no sign change occurs after action of
permutator, or fermionic (F) otherwise. For arbitrary d, there are many possibilities of grouping
the d physical species into NS SS; each of them corresponding to a different generalized
permutator. The latter can be classified as BlF k−l for 0 � l � k, 1 < k � NS . Whenever
the matrix representing the two-site Hamiltonian coincides with the matrix representation of
a generalized permutator, the global Hamiltonian is integrable.

Returning to our case, for which d = 3, it can be seen [5] that the infinite U Hubbard model
is a BF model, where the bosonic species at each site is the vacuum, and the fermionic one is
formed by the two singly occupied states (with up and down spin), whereas the supersymmetric
t −J model is a BF2 model, the three SS coinciding precisely with the physical species at each
site |αF 〉. In general, it has been shown that all integrable fermionic models with an on-site
vector space V of dimension 3, which locally act as generalized permutator [12], and globally
preserve �S and N are eight; in correspondence to the possible different choices J = (s1 + s2)t ,
and V = − J

4 + (s1 + s3)t ; with sα = ±1 for α = 1, 2, 3 independent signs. Our spin–fermion
mapping now allows us to map the integrable fermionic cases into spin 1 ones; interestingly,
apart from the cases with J = ±2t already discussed in the previous section, in so doing
we obtain other four integrable spin-1 models, which fact to our knowledge was never noted.
All of these imply the choice J = 0, thus corresponding to generalizations of the infinite U
Hubbard model. In the spin realization their Hamiltonian reads

H
(S)
EU∞ = −t

∑
j

{
[(S+Sz)j (SzS−)j+1 + (SzS+)j (S−Sz)j+1 + h.c.] + (s1 + s2)S

2
z,j S

2
z,j+1

}
. (22)

We can provide ground-state energy ε = E0/L, with E0 lowest eigenvalue, for each of these
models.

In fact, following Sutherland notation, it is easily seen that the models coincide—up to
conserved quantities—with a B2 model for s1 = s2 = −1, with two BF models for s1 = −s2,
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and with a F 2 model for s1 = s2 = +1. For all of them, ε can be evaluated using the extension
of Sutherland theorem which holds for generalized permutators [13], and turns out to be

ε =




−1 for B2

2nF − 1 − 2

π
sin πnF for BF

1 − 2 ln 2 for F 2;
(23)

here nF = NF /L is the density of the fermionic species, which is related to N : NF = N for
s1 = +1, NF = L − N for s1 = −1.

6. Summary and conclusions

In this paper we revisited known spin–fermion mappings showing that the underlying structure
is that of local identities, which relate different realizations of abstract projection operators.
This result is contained in equations (5) and (6) and holds for arbitrary dimension of both the
ambient lattice � (D) and the on-site vector space V (d), under the very reasonable condition
that the physical Hamiltonian is an even operator in the fermionic fields. We then specialized
to one-dimensional lattice, and in this case we explicitly gave our generalized JWT in terms of
simple local relations between bilinear products of on-site projection operators in the spin and
fermionic languages (equation 10). The latter still holds for arbitrary d, giving the standard
JWT results for d = 2. Finally we focused on the case d = 3, obtaining from the extended
fermionic t − J models, the corresponding S = 1 models. In particular, we used the mapping
to generate new integrable spin-1 cases (equations (21) and (22)) providing for each of them
the ground-state energy.

Possible developments of the present work are on the one hand in the generalization of
the local identity to other particle realizations (for instance, hard-core bosons and anyons), as
well as in the explicit analysis of cases with d > 3 (the correspondence of extended Hubbard
models with spin-3/2 models being of course the easier application), and on the other hand in
providing a bridge to comprehension/solutions of models which could strongly differ in their
physical meaning, but are unified from a mathematical point of view: for instance, even models
in dimension greater than one, such as strips and ladders, can be mapped into one-dimensional
models with on-site vector space of appropriate (finite) dimension avoiding the sign problem.
Work is in progress along these lines.
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